ASDSO Dam Safety Toolbox

Loads / Load Cases: Difference between revisions

From ASDSO Dam Safety Toolbox
Jump to: navigation, search
No edit summary
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- Delete any sections that are not necessary to your topic. Add pictures/sections as needed -->
<!-- Delete any sections that are not necessary to your topic. Add pictures/sections as needed -->
__NOTOC__
__NOTOC__
[[Category:Global Stability of a Dam]]
----
----


Line 9: Line 10:
|link=  
|link=  
<!-- Add picture caption -->  
<!-- Add picture caption -->  
|caption= Free body diagram showing forces acting on a gravity dam.  
|caption= Free body diagram showing forces acting on a gravity dam.
(Image Source: [https://commons.wikimedia.org/wiki/File:Forces_Gravity_Dam.jpg Wikimedia])
}}  
}}  


Line 15: Line 17:
There are a variety of forces against which a dam should be designed to adequately resist including but not limited to: self-weight, static water pressures, wave pressures, sediment buildup pressures, uplift water pressures, wind pressures, thermal loads, ice pressures, and earthquake forces.  
There are a variety of forces against which a dam should be designed to adequately resist including but not limited to: self-weight, static water pressures, wave pressures, sediment buildup pressures, uplift water pressures, wind pressures, thermal loads, ice pressures, and earthquake forces.  


"Design of civil works projects must be performed to ensure acceptable performance of all [[Reinforced Concrete|reinforced concrete]] hydraulic structures during and after each design event. Three levels of performance for [[stability]], strength, and stiffness are used to satisfy the [[structural]] and operational requirements for load categories with three expected ranges of recurrence (Usual, Unusual, and Extreme).<ref name="EM 1110-2-2104">[[Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104) | Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104), USACE, 2016]]</ref>
"Design of civil works projects must be performed to ensure acceptable performance of all [[Reinforced Concrete|reinforced concrete]] hydraulic structures during and after each design event. Three levels of performance for [[stability]], strength, and stiffness are used to satisfy the [[structural]] and operational requirements for load categories with three expected ranges of recurrence (Usual, Unusual, and Extreme).<ref name="EM 1110-2-2104">[[Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104) | Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104), USACE, 2016]]</ref> Minimum acceptable factors of safety for these load categories typically vary, with higher factors of safety required for usual conditions and lower factors of safety required for extreme conditions.


==Best Practices Resources==
==Best Practices Resources==
{{Document Icon}} [[Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104) | Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104), USACE, 2016]]
{{Document Icon}} [[Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053) | Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053), USACE]]
{{Document Icon}} [[Calculating Forces on Components of Hydraulic Structures (ERDC/CHL CHETN-IX-21) | Calculating Forces on Components of Hydraulic Structures (ERDC/CHL CHETN-IX-21), USACE, 2009]]
{{Document Icon}} [[Stability Analysis of Concrete Structures (EM 1110-2-2100) | Stability Analysis of Concrete Structures (EM 1110-2-2100), USACE]]
{{Document Icon}} [[Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053) | Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053), USACE, 2007]]
{{Document Icon}} [[Ice Engineering (EM 1110-2-1612) | Ice Engineering (EM 1110-2-1612), USACE]]
{{Document Icon}} [[Stability Analysis of Concrete Structures (EM 1110-2-2100) | Stability Analysis of Concrete Structures (EM 1110-2-2100), USACE, 2005]]
{{Document Icon}} [[Ice Engineering (EM 1110-2-1612) | Ice Engineering (EM 1110-2-1612), USACE, 2002]]
{{Document Icon}} [[Nonlinear, Incremental Structural Analysis of Massive Concrete Structures (ETL 1110-2-365) | Nonlinear, Incremental Structural Analysis of Massive Concrete Structures (ETL 1110-2-365), USACE, 1994]]


==Trainings==
==Trainings==

Latest revision as of 15:12, 21 July 2023


Free body diagram showing forces acting on a gravity dam.

(Image Source: Wikimedia)

There are a variety of forces against which a dam should be designed to adequately resist including but not limited to: self-weight, static water pressures, wave pressures, sediment buildup pressures, uplift water pressures, wind pressures, thermal loads, ice pressures, and earthquake forces.

"Design of civil works projects must be performed to ensure acceptable performance of all reinforced concrete hydraulic structures during and after each design event. Three levels of performance for stability, strength, and stiffness are used to satisfy the structural and operational requirements for load categories with three expected ranges of recurrence (Usual, Unusual, and Extreme).[1] Minimum acceptable factors of safety for these load categories typically vary, with higher factors of safety required for usual conditions and lower factors of safety required for extreme conditions.

Best Practices Resources

Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053), USACE

Stability Analysis of Concrete Structures (EM 1110-2-2100), USACE

Ice Engineering (EM 1110-2-1612), USACE

Trainings

On-Demand Webinar: Introduction to Concrete Gravity Dams

On-Demand Webinar: Analysis of Concrete Arch Dams

On-Demand Webinar: Stability Evaluations of Concrete Dams

On-Demand Webinar: Uplift and Drainage for Concrete Dams and Spillways

On-Demand Webinar: Seismic Stability Evaluation of Earth Dams

On-Demand Webinar: Earthquake Hazards, Ground Motions and Dynamic Response

On-Demand Webinar: Delhi Dam – A Compound Failure

On-Demand Webinar: Current Trends in the Seismic Analysis of Embankment Dams


Citations:


Revision ID: 7374
Revision Date: 07/21/2023