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1. Purpose: This ETL contains criteria and guidance for assessing the
sliding stability of gravity dams and other concrete structures.

2. Applicability. This letter is applicable to all field operating
activities having civil works design responsibilities.

3. References.

a. ER 1110-2-1806, ItEarthquakeDesign and Analysis for Corps Of Engineers
Dams.‘f

b“. EM 1110-1-1801, !?GeologicalInvestigation.”

c. EM 1110-2-1803, “Subsurface Investigation-Soils.“

d. EM 1110-2-1902, ~lstabilityof Earth and Rockfill Dams.”

e. EM 1110-2-1906, “Laboratory Soils Testing.”

f. EM 1110-2-1907, “Soil Sampling.”

g. EM 1110-2-2200, llGravityDam DeSign.”

h. EM 1110-2-2501, “Flood Walls.”

i. EM 1110-2-2502, “Retaining Walls.”

d. Rock Testing Handbook, “Standard and Recommended Methods,” 1978.
Available from U.S. Army Waterways Experiment Station, P.O. Mx 631,
Vicksburg, MS 39180.

k. Henny D.C., l~stabilityof Straight Concrete Gravity Damsl°

Transactions, berican Society of Civil Engineers, Vol, 99, 1934. Available
from Publications Sales Office, Civil Engineering-ASCE, 345 East 47th St., New
York, NY 10017.

1. International Society for Rock Mechanics, Commission on
Standardization of Laboratory and Field Tests, ‘tSuggestedMethods for
Determining Shear Strength,’!Document No. 1, February 1974. Available from
Printing and Publishing Office, National Academy of Sciences, 2101
Constitution Avenue, N.W., Washington, DC 20418.
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m. Simmons, Marvin D., “Assessment of Geotechnical Factors Affecting the
Stability of the Martins Fork Dam,” May 1978. Available from U.S. Army
Engineer District Nashville, P.O. Box 1070, Nashville, TN 37202.

n. Janbu, N., !!slopeStability COmPutatiOns~1?Embankment Dam Engineering

Casagrande Volume, 1973, John Wiley and Sons, 605 Third Ave., New York, NY
10016.

0. Morgenstern, N.R. and Price, V.E., “The Analysis of the Stability of
General Slip Surfaces,” Geotechnique, Vol. No. 15, March 1965 Available from
The Institute of Civil Engineers, Great George St., London, S.W. 1, England..

4. Action. For designand investigation of concrete structures, the
assessment of sliding stability on rock and soil foundations should use the
procedures outlined in the following paragraphs. The following guidance on
sliding stability analyses has evolved from over two decades of experience in
the design of substructures on foundations with weak sliding resistance.

5. Summary. This ETL prescribes guidance, developed from presently
acceptable structural and geotechnical principles, in the form of equations
for evaluating the factor of safety of single and multiple plane failure
surfaces under both static and seismic loading conditions. Basic
considerations for determining shear strength input parameters for the
analysis are discussed. Minimum required factors of safety are established
for both the static and seismic loading conditions. Background describing the
development of the previously used shear-friction and resistance to sliding
design criteria for evaluating the sliding stability of gravity hydraulic
structures, and the basic reasons for reDlacing the old criteria, are included
in inclosure one. Example problems for single and multiple wedge systems are
presented in inclosure two. An alternate method of analysis is discussed in
inclosure three.

6. DesiRn Process.

a. Analysis. An adequate assessment of sliding stability must account
for the basic structural behavior, the mechanism of transmitting compressive
and shearing loads to the foundation, the reaction of the foundation to such
loads, and the secondary effects of the foundation behavior on the structure.

b. Coordination. A fully coordinated team of geotechnical and structural
engineers and geologists should insure that the result of the sliding analyses
is properly integrated into the overall design of the substructure. Some of
the critical aspects of the design process which require coordination are:

(1) Preliminary estimates of geotechnical data, subsurface conditions and
types of substructures.

(2) Selection of loading conditions, loading effects, potential failure
mechanisms and other related features of the analytical models.

(3) Evaluation of the technical and economic feasibility of alternative
substructures.
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(4) Refinement of the preliminary substructure configuration and
proportions to reflect consistently the results of detailed geotechnical site
explorations, laboratory testing and numerical analyses.

(5) Modification to the substructure configuration or features during
construction due to unexpected variations in the foundation conditions.

7. Determining Foundation Strength Parameters.

a. General. The determination of foundation strength parameters is the
most difficult geotechnical element of the assessment of sliding stability.
This determination is made by analysis of the most appropriate laboratory
and/or in-situ strength tests on representative foundation samples coupled
with intimate knowledge of the geologic structure of a rock foundation or
inhomogeneities of a soil foundation.

b. Field Investigation. The field investigation must be a continual
process starting with the preliminary geologic review of known conditions,
progressing to a detailed boring program and sample testing program and
concluding at the end of construction with a safe and operational structure.
The scope of investigation and sampling should be based on an assessment of
inhomogeneity or geologic structural complexity. For example, the extent of
the investigation could vary from quite limited (where the foundation material
is strong even along the weakest potential failure planes) to quite extensive
and detailed where weak zones or seams exist. However, it must be recognized
that there is a certain minimum of investigation necessary to determine that
weak zones are not present in the foundation. Undisturbed samples are
required to determine the engineering properties of the foundation materials,
demanding extreme care in application and sampling methods. Proper sampling
is a combination of science and art, many procedures have been standardized
but alteration and adaptation of techniques are often dictated by specific
field procedures as discussed in EM I11o-I-I8o1, tfGeolOgicalInvestigations!”

EM 1110-2-1803, ‘Subsurface Investigations, Soils,” and EM 1110-2-1907, “Soil
Sampling.”

c. Strength Testina. The nearly infinite number of combinations of soil
and rock properties and rock structural conditions preclude a standardized
universal approach to strength testing. Before any soil or rock testing is
initiated, the geotechnical design engineer and the geologists responsible for
formulating the testing program must clearly define the purpose of each test
to themselves and to the persons who will supervise the testing. It is
imperative to use all available data such as geological and geophysical
studies when selecting representative samples for testing. Decisions must be
made concerning the need for in-situ testing. Soil testing procedures are
discussed in EM I11o-2-19o6, “Laboratory Soils Testing.” Rock testing
procedures are discussed in the Rock Testing Handbook and in the International
Society of Rock Mechanics, !fsuggestedMethods for Determining Shear

Strength.” These testing methods may be modified as appropriate to fit the
circumstances of the project. (References 3j and 31)



d. Desi&n Shear Strengths. Shear strength values used in sliding
analyses are determined from available laboratory and field tests, and
judgment. Information in EM 1110-2-1902 “Stability of Earth and Rockfill
Dams,‘t on types of soils type tests and selection of design shear strengths
should be used where appropriate. There is no equivalent Engineering Manual
which provides information on appropriate types of rock tests and selection of
shear strengths. It is important to select the types of tests based upon the
probable mode of failure. Generally, strengths on rock discontinuities would
b used with an active wedge and beneath the structure. A combination of
strengths on discontinuities and/or intact rock strengths would be used with a
passive wedge.

8. Method of Analysis.

a. Definition of Factor of Safety. The guidance in this ETL is based on
modern principles of structural and geotechnical mechanics which apply a
safety factor to the material strength parameters in a manner which places the
forces acting on the structure and foundation wedges in sliding equilibrium.
The factor of safety (FS) is defined as the ratio of the shear strength (~)
and the applied shear stress (T) according to Equations one and two:

(1)

Failure Envelope

b. Basic Concepts and Principles.

(2)

(1) A sliding mode of failure will occur along a presumed failure surface
when the applied shearing force (T) exceeds the resisting shearing forces (TF)
The failure surface can be any combination of plane and curved surfaces, but
for simplicity, all failure surfaces are assumed to be planes which form the
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bases of wedges. The critical failure surface with the lowest safety factor,
is determined by an iterative process.

(2) Sliding stability of most concrete structures can be adequately
assessed by using a limit equilibrium approach. Designers must exercise sound
judgment in performing these analyses. Assumptions and simplifications are
listed below:

(a) A two-dimensional analysis is presented. These principles should be
extended if unique three dimensional geometric features and loads critically
affect the sliding stability of a specific structure.

(b) Only force equilibrium is satisfied in this analysis. Moment
equilibrium is not used. The shearing force acting parallel to the interface
of any two wedges is assumed to be negligible. Therefore the portion of the
failure surface at the bottom of each wedge is only loaded by the forces
directly above or below it. There is no interaction of vertical effects
between the wedges. Refer to references 3n and 30 for a detailed discussion
concerning the effects of moment equilibrium and shear forces acting at the
interface.

(c) Analyses are based on assumed plane failure surfaces. The calculated
safety factor will be realistic only if the assumed failure mechanism is
cinematically possible.

(d) Considerations regarding displacements are excluded from the lilnit
equilibrium approach. The relative rigidity of different foundation materials
and the concrete substructure may influence the results of the sliding
stability analysis. Such complex structure-foundation systems may require a
more intensive sliding investigation than a limit equilibrium approach. The
effects of strain compatibility along the assumed failure surface may be
included by interpreting data from in-situ tests, laboratory tests and finite
element analyses.

(e) A linear relationship is assumed between the resisting shearing force
and the normal force acting along the failure surface beneath each wedge.

c. Analytical Techniques for Multi-wedge Systems.

(1) A derivation of the governing wedge equation for a typical wedge is
shown on figures one through nine. The governing wedge equation is shown on
figures six and seven.

(2) The following approach to evaluating sliding stability Qf concrete
structures
principles
single and

(3) A

is based o; the definition of safety factor and engineering
discussed above. Examples of typical static loading conditions for
multiple wedge systems are presented in inclosure two.

general procedure for analyzing multi-wedge systems includes:
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(a) Assuming a potential failure surface which is based on the
stratification, location and orientation, frequency and distribution of
discontinuties of the foundation material, and the configuration of the
substructure.

(b) Dividing the assumed slide mass into a number of wedges, including a
single structural wedge.

(c) Drawing free body diagrams which show all the forces assumed to be
acting on each wedge.

(d) Solving for the safety factor by either direct or iterative methods.

(4) The analysis proceeds by assuming trial values of the safety factor
and unknown inclinations of the slip path so the governing equilibrium
conditions, failure criterion and definition of safety factor are satisfied
(see Figure 7). An analytical or a graphical procedure may be used for this
iterative solution.

d. Design Considerations. Some special considerations for applying the
general wedge equation to specific site conditions are discussed below.

(1) The interface between the group of active wedges and the structural
wedge is assumed to be a vertical plane located at the heel of the structural
wedge and extending to the base of the structural wedge. The magnitudes of
the active forces depend on the actual values of the safety factor and the
inclination angles (~) of the slip path. The inclination angles,
corresponding to the maximum active forces for each potential failure surface,
can be determined by independently analyzing the group of active wedges for a
trial safety factor. In rock the inclination may be predetermined by
discontinuities in the foundation. The general equation only applies directly
to active wedges with assumed horizontal active forces.

(2) The governing wedge equation is based on the assumption that shearing
forces do not act on the vertical wedge boundaries, hence there can only be
one structural wedge because concrete structures transmit significant shearing
forces across vertical internal planes. Discontinuities in the slip path
beneath the structural wedge should be modeled by assuming an average slip-
plane along the base of the structural wedge.

(3) The interface between the group of ~assive wedges and the structural
wedge is assumed to be a vertical plane located at the toe of the structural
wedge and extending to the base of the structural wedge. The magnitudes of
the passive forces depend on the actual values of the safety factor and the
inclination angles of the slip path. The inclination angles, corresponding to
the minimum passive forces for each potential failure mechanism, can be
determined by independently analyzing the group of passive wedges for a trial
safety factor. The general equation only applies directly to passive wedges
with assumed horizontal passive forces. When passive resistance is used
special considerations must be made. Rock that may be subjected to high
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Sliding Stability Analysis of
a General kVedge System

Positive Rotation
of Axes

+y

Negative Rotation ‘
of Axes

+x

The equations for sliding stability analysis of a general wedge system are based on the right hand

sign convention which is commonly used in engineering mechanics. The origin of the coordinate

system for each wedge is located in the lower left hand corner of the wedge. The x and y axes are

horizontal and vertical respectively. Axes which are tangent (t) and normal (n) to the failure plane

are oriented at an angle (a) with respect to the +x and +y axes. A positive value of ~ is a counter-

clockwise rotation, a negative value of Q is a clockwise rotation.

Figure 1. Sign Convention for Geometry
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Sliding Stability Analysis of
a Genera Wl:dge System
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Figure 2. Geometry of the Typical ith Wedge and Adjacent Wedges
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Sliding Stability Analysis cf
a General Wedge System
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Figure 3. Distributionof Pressuresand ResultantForces Acting on a Typical Wedge
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Sliding Stability Analysis of
a General Wedge System
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Sliding Stability Analysis of
a General Wedge System

+n +Y Equilibrium Equations

NZFn=O
‘i

o= Ni+Ui–wi COsai–vi COSQi– HLi Sin~i+HRisin ai +...

. . . ‘Pi_l sin ai + Pi Sinai

Ni=(wi+ vi) CoSai–ui+(HLi– HRi) Sinai+ (pi_l –pi) Sitlai

+t

L
ZFt=O

u“
1 0 = -Ti ‘Wi Sifl ai – vi Sinai +HLi COSai– HRi CC)s ai ‘.. .

+x

+ Pi_l COSUi. . . – Pi COS ai

Ti = (HLi _ HRi) cos ai – (Wi+ Vi) Sinai+ ipi_l ‘pi) Cosai

Mohr-Coulomb Failure Criterion

TF = Ni tan~i+ ciLi

Safe~ Factor Definition

TF Nitan@i+ci Li

FSi=~ =
i Ti

(3)

(4)

(5)

(6)

Figure 5. Derivation of the General Equation
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Sliding Stability Analysis of
a General Wedge System

Governing Wedge Equation

{(Wi+ vi) cOS~i - Ui+ [( HLi - HRi) + (pi_l –pi)] Sinai tan@i+ci Li
FSi =

}

[(HLi - HRi)+(pi_l ‘pi)] COS ai _ (Wi+ vi) Sinai

tan #i

(pi_,

tan +i
- ;i) (COSQi “ ‘—)= [(wi+vi) COSai–ui +( HLi_H~i)sinai]—

- “n a’ FSi FSi ‘“””

‘i
—Li–

‘FSi
(HLi – HRi) COSai+ (Wi+ vi) Sinai. . .

[(wi+Vi)COS=i -Ui+(HLi - HRi) Sinai]

tan+i Ci

‘- (HLi -H Ri)cosai+(Wi+ Vi) sitlai+~Li

(Pi_, - Pi)= FSi
(7) ‘

-f

tan4; ‘–i
I [COS. i –Sifl. i+)

i I

NOTE: A negative value of the difference (Pi-l -Pi) indicates

thatthe applied forces acting on the ith wedge exceed

the forces resisting sliding along the base of the wedge.

A positive value of the difference (Pi, -1-Pi) indicates

that the applied forces acting on the ith wedge are less

than the forces resisting sliding along the base of that

wedge.

Figure 6. Derivation of the General Equation
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Sliding Stability Analysis for
a General Wedge System

Solution for the Safety Factor

The governing equation for (Pi_l – pi) applies to the individual wedges

tan@i Ci

i(Wi+Vi)cOsai– Ui+ (HLi – HRi) sinui]— - (HLi -HRi) cosai + (Wi+ Vi) sinai+RLi

(Pi_l -Pi)= FSi I

tan ~;

(COS.i-Sifl u.-)
1 FSi

For the sysrern of wedges to act as an integrai failure mechanism, the safery facrors for ail wedges must
be identical .

FS1=FS2= . ..= FSi_1=FSi=FSi+1 =.. .FSN

N = Number of wedges in the failure mechanism

The acfua/ safety factor ( FS) for sliding equilibrium is determined by satisfying overa// horizonra/ equilibrium

( ~~ H = 0) fOr the errrire SYStem of wedges

N
z (Pi_l -Pi) =0
i= 1

And: Po=o PN=O

Usually an irerafjve solution process is used to determine the actual safe~ factor for sliding equilibrium.

Figure 7. Derivation of the General Equation
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Sliding Stabil iW Anal ysis of
aGeneralWedge System
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A slid’ng stability analysis using the general wedge equation should yield results comparable to those obtained from
graphical solutions using force polygons. This is clarified by the following discussion of the force polygon shown
above

Figure 8. Force Polygon ./or a Typical Wedge
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The angle (a i) between the Wi and Ui vector’s is a positive value for wedges sliding upward, and is a negative value
for wedges sliding downward.

Sliding Upward

1
Vi

H ~i

‘u

HRi

!

Wi _

Pi
+ai —

~
Ti = Ni tan@i+Ci Li

u:\ \
Ni

Free Body

Sliding Downward

‘Ni /ui
Free Body

HRi

Pi
—

~4-\
*,X%

v.

CiLi
Ui

Force Polygon

HRi Pi

Ni tan ~i

Vi

7

b

Ni

Wi _a. CiLi.
I

HLi ‘i–l

Ui

Force Polygon

Refer to notes on

followina Pacre.

Figure 9. Force Polygons for Upward and Downward Sliding.
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NOTES FOR FIGURES 8 and 9

1. The relationships from the typical force polygon are consistent with

the analytical relationships previously developed for the Governing Wedge

Equation.

2. The lines of dimensions on the force polygon

and N1 vectors represent the summation of forces

plane (identical to equation”three).

lyinq parallel to the Ui

normal to the failure

Ni = HLi SiIl al + pi-l SIIl ai + V1 COS al + Wi COS al - Ui - pi sin al - HR1 sin ~j

3. The lines of dimensions on the force polygon shown on Figure Nine lying

parallel to the CiLi and Ni tan $i vectors represent the sumation of forces

parallel to the failure plane (identical to equation four).

Pi-lcosai=vlsin ~+wlsinai+plcos ~+HR1cos ai~i~l+Nitan$l-HLicos ~

4. These two equations can be combined with the safety factor definition

for a typical wedge to obtain the Governing Wedge Equation.

{(Wi+Vi)COS=i-
]tanq

ui+(HL1-HR1)sin=l _
FSi -(HL1-HR1) cos”i+(wi+vl) sin”i+ & ‘i

i

Pi-l-Pi =

t~$i )(cos=i-sin=i
FSi
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CORRECTED COPY

velocity water scourirq should not be used unless amply protectd. Also, the
compressive stretqth of the rock layers must be sufficient to develop the
wedge resistance. M some cases wedge resistance should not be assumed
without resorti~ to special treatment such as installing rock anchors.

(4) Slidi~ analyses should consider the effects of cracks on the active
side of the structural ~ge in the foundation material due to differential
settlement, shrinkage or joints in a rock mass. The depth of cracking in
cohesive foundation material can be estimatd in accordance with equations
eight thro~h ten:

2c~
dc = — tan (45 +

$~

Y T)

cd = F:

+d = ‘tan-l ( ‘an $ )
FS

(8)

(9)

(lo)

The value (dc}in a cohesive foundation cannot exc~ the embedment of the
structural wedge. The depth of cracki~ in massive strory rock foundations
should be assumed to extend to the base of the structural ~ge. Shearing
resistance alo~ the crack should be ignored ati full hydrostatic pressure
should be assumed to act at the bottom of the crack. The hydraulic gradient
across the base of the structural wedge should reflect the presence of a crack
at the heel of the structural wedge.

(5) The effects of seepage forces should be included in the sliding
analysis. Analyses should be based on conservative estimates of uplift
pressures. Estimates of uplift pressures on the wedges can be ksed on the
followi~ assumptions:

(a) The uplift pressure acts over the entire area of the base.

(b) If seepage from headwater to tailwater can occw across a structure,
the pressure head at any point should reflect the head loss due to water
flowi~ throqh a medium. The approximate pressure head at any pint can be
determined by the line-of-seepage method. This method assumes that the head
loss is directly proportional to the length of the seepage path. The seepage
path for the structural wedge extends from the upper .sWface (or internal
groundwater level) of the untracked material adjacent to the heel of the
structure, alorq the embedded ~rimeter of the structural @ge, to the upper
surface (or internal groundwter level) adjacent to the toe of the structure.
Referri~ to figure ten, the seepage distance is defined by points a~ b? Cl

* and d. The pressure head at any point is equal to the initial total head
minus the product of the hydraulic gradient times the seepage path d-distance to
the ~int in question, minus the elevation head. The &ressure head is defined
as the height to tiich water rises In a plezometer located at the point under
consideration. The initial total head is the head differential between
head~ter and tailwater. The elevation head is the vertical distance between
the point bei~
below tailwater

considered ad the tallwater elevation (negative if
or positive if above). -timates of pressure heads for the *

17
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active and passive wedges should be consistent with those of the heel and toe
of the structural wedge. For a more detailed discussion of the line-of-
seepage method, refer to EM 1110-2-2501, Floodwalls. For the majority of
structural “stability computations, the line-of-seepage is considered
sufficiently accurate. However, there may be special situations where the
flow net method is required to evaluate seepage problems.

(c) Uplift pressures on the base of the structural wedge can be reduced
by foundation drains. The pressure heads beneath the structural wedge
developed from the line-of-seepage analysis should be modified to reflect the
effects of the foundation drains. A maximum reduction in pressure head along
the line of foundation drains equal to the pressure head at the structure toe
plus 25-50 percent of the difference between the undrained pressure head at
the toe and that at the line of drains may be assumed. The uplift pressure
across the base of the structural wedge usually varies from the undrained
pressure head at the heel to the assumed reduced pressure head at the line of
drains to the undrained pressure head at the toe, as shown in figure ten.
Uplift forces used for the sliding analyses should be selected in
“considerationof conditions which are presented in the applicable design
memoranda. For a more detailed discussion of uplift under gravity dams, refer
to EM 1110-2-2200, Gravity Dams.

(6) As stated previously, requirements for rotational equilibrium are not
directly included in the general wedge equation. For some load cases, the
vertical component of the resultant applied loads will lie outside the kern of
the base area, and a portion of the structural wedge will not be in contact
with the foundation material. The sliding analysis should be modified for
these load cases to reflect the following secondary effects due to coupling of
sliding and overturning behavior.

(a) The uplift pressure on the portion of the base which is not in
contact with the foundation material should be a uniform value which is equal
to the maximum value of the hydraulic pressure across the base, (except for
instantaneous load cases such as due to seismic forces).

(b) The cohesive component of the sliding resistance should only include
the portion of the base area which is in contact with the foundation material.

e. Seismic Sliding Stability.

(1) The sliding stability of a structure for an earthquake-induced base
motion should be checked by assuming the specified horizontal earthquake

18
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Figure 10. Uplift Pressures
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acceleration, and the vertical earthquake acceleration if included in the
analysis, to act in the most unfavorable direction (figure 11). The
earthquake-induced forces on the structure and foundation wedges may then be
determined by a rigid body analysis.

(2) For the rigid body analysis the horizontal and vertical forces on the
structure and foundation wedges may be determined by using the following
equations: ZH = Mx +& + HS (11)

Iv = Mq - my - U (12)
M= mass of structure and-wedges, weight/g
m= added mass of reservoir and/or adjacent soil

g = acceleration of gravity..
x= horizontal earthquake acceleration
4.
Y = vertical earthquake acceleration
Hs = resultant horizontal static forces
u= hydrostatic uplift force

(3) The horizontal earthquake acceleration can be obtained from seismic
zone maps (ER 1110-2-1806 “Earthquake Design and Analysis for Corps of
Engineers Dams”) or, in the case where a design earthquake has been specified
for the structure, an acceleration developed from analysis of the design
earthquake. Guidance is being prepared for the latter type of analysis and
will be issued in the near future; until then, the seismic coefficient method
is the most expedient method to use. The vertical earthquake acceleration is
normally neglected but can be taken as two-thirds of the horizontal
acceleration if included in the analysis.

(4) The added mass of the reservoir and soil can be approximated by
Westergaardfs parabola (EM 1110-2-2200 ‘rGravityDam Designlt)and the Mononobe-
Okabe method (EM 1110-2-2502 “Retaining Wallstt),respectively. The structure
should be designed for a simultaneous increase in force on one side and
decrease on the opposite side of the structure when such can occur.

9. Required Factors of Safety.

a. Factors of Safety. For major concrete structures (dams, lockwalls,
basin walls which retain a dam embankment, etc.) the minimum required factor
of safety for normal static loading conditions is 2.0. The minimum required
factor of safety for seismic loading conditions is 1.3. Flood walls and
retaining walls are excepted from the provisions of this paragraph; refer to
EM 1110-2-2501 and EM 1110-2-2502 for a discussion of safety factors for those
structures. Any relaxation of these values will be accomplished only with the
approval of DAEN-CWE and should be justified by comprehensive foundation
studies of such nature as to reduce uncertainties to a minimum.

b. Past Practice. Prior to issuing this ETL, the minimum required factor
of safety for static loading conditions (as calculated by the shear friction
method) was four. The primary reasons for use of this conservative factor of
safety were the uncertainty in determining rock shear strength parameters and
the peak shear strengths from tests on intact rock. The minimum required
factor of safety for static loading conditions has been reduced to two for the
reasons discussed in inclosure one and the following:
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Figure Il. Seismically Loaded Gravity Dam

21



symbol

F

H

L

N

P

FS

T

T
F

u

v

w

c

a

LIST OF SYMBOLS

Definition

Forces ,

In general, any horizontal force
applied above the top or below the
bottom of the adjacent wedge.

Length of wedge along the failure
surface.

The resultant normal force along the
failure surface.

The resultant pressure acting on a
vertical face of a tpical wedae.

The factor-of-safety.

The shearing force actinq along the
failure surface.

The maximum resisting shearing force
which can act along the failure surface.

The uplift force exerted along the
failure surface of the wedge.

My vertical force applied above the
top of the wedge.

The total weight of water, soil or
concrete in the wedge.

Cohesion.

The angle between the inclined plane
of the ?otential failure surface
and the horizontal (Fositive counter-
clockwise) .

The angle of shearing resistance, or
internal friction.

Weight per unit volume.

22
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LIST OF SYMBOLS

Definition

Normal stress.

Shear stress.

Shear strength.

NOTE : Subscripts containing(i, i-l, if i+lt ‘----1 refer ‘0
body forces, surface forces or dimensions associated with
the ith wedge.

Subscripts containing Ri or Li refer to the riuht or left
side of the ith wedge.
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(1) Methods of sampling and sample testing have substantially improved
and much better definition of soil and rock mass strengths are now possible.
Of the above reasons, the capability of better definition of mass strength is,
by far, the most important. Sampling techniques of two or three decades ago
favored the collection of intact samples with little attention being given to
core loss zones. Tests were usually performed on intact specimens and gave
large values for cohesion and angles of internal friction. Testing of
strengths along discontinuities such as bedding planes, joint planes and tests
on joint filling materials were rarely performed. Tests were rarely carried
beyond peak strength to determine ultimate and residual strengths. Current
exploration practice is to emphasize obtaining samples from the weak zones.
Tests are run on discontinuities and weak zones. Peak, ultimate and residual
strengths are obtained. If necessary, in-situ tests are performed.

(2) Factors of safety less than four have been used for the design of the
Waco, Proctor, Aliceville and Martins Fork projects (projects in Southwest
Division, South Atlantic Division and.Ohio River Division). Details
concerning the design of the Martins Fork Project are available in reference
3m.

(3) In past and current stability analyses the three dimensional (side)
effects exist, and are not accounted for; which results in additional safety.

c. General. Appropriate values of computed safety factors depend on the;
(1) design condition being analyzed; (2) degree of confidence in design shear
strength values; (3) consequence of failure; (4) thoroughness of investigation;
(5) nature of structure-foundation interaction; (6) environmental conditions
and quality of workmanship during construction; and (7)judgment based on
past experience with similar structures. For example, for flood control
structures the most critical loading condition usually is caused by a high
reservoir level of infrequent occurrence, and for low-head navigation dams,
the most critical loading condition with the greatest head differential is the
normal operating condition, which exists most of the time.

FOR THE COMMANDER:
\

3 Incl LLbYD A. DUSCHA, P. E.
1. Background Chief, Engineering Division
2. EXamples Directorate of Civil Works
3. Alternate Method of Analysis
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BACKGROUND

1. Previous Methods. TWO of the approaches to the sliding st~ility

analysis that have been used by the Corps of Engineers (CE), are the
sliding resistance and shear-friction methods.

a. Sliding Resistance Method. The sliding resistance method is
seldom used by the CE for current designs. This concept was the common
criterion for evaluating sliding stability of gravity dams from
approximately 1900 to the mid-1930’s. Experience of the early dam
designers had shown that the shearing resistance of very competent
foundation material need not be investigated if the ratio of horizontal
forces to vertical forces (XH/XV)is such that a reasonable safety factor
against sliding results. The maximum ratio of XflVis set at 0.65 for
static loadinq conditions and 0.85 for seismic conditions.

b. Shear-Friction.

(1) The shear-friction method of analysis is the guidance currently
used throughout the CE for evaluating sliding stability of gravity dams
and mass concrete hydraulic structures. This method was introduced by
Henny in 1933 (Reference 3k “Stability
Dams”) . The basic formula is Q = S

F

The shear-friction method was extended

The total resisting shear strength, S,
equation:

of Straight Concrete Gravity

in later guidance.

was defined by the

S=sl + k (W-U)

(1)

coulomb

(2)

It is important to note that Henny considered only single, horizontal
failure glanes.

(2) Henny established the minimum shear-friction factor as four (4).
Although the rationale for selecting this value is vague, it does
appear to be the approximate average value of Q in Table eight of
Reference 3k which compares the dimensions of an ideal dam, uplift forces,

shear-friction safety factors, and nominal slidinq factors.

(3) Records cannot be located to indicate adaptation of Henny’s work
into the Corps of Engineers slidinq stability criteria. ?Jevertheless,

the initial concept of defining the shear-friction factor as the ratio of
the total resisting shear force acting alonq a horizontal failure plane
to the maximum horizontal drivinq force can be attributed to Henny and
thus technology of the 1930’s.

Inclosure 1
1-1
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(4) The earliest form of the shear-friction in official CE quidance
is:

ss-f = f~V + rSA
ZH

This equation included a factor (r) by which S was multiplied. “
factor represents the ratio between averaae an~ maximum shear st~~~~s.
It was generally assumed to equal 0.5. This was a partial attempt to
allow for possible progressive failure.

(5) The definition of the shear-friction factor was e~anded to
include the effect of inclined failure planes and embedment to resistance.
The shear-friction factor, in the expanded form, was defined as:

R+P
s P
s-f = ~

(3)

Equations for R and P
treated the downstre &

were derived for static equilibrium conditions
wedge and structure (including any foundation

material beneath the structure but above the critical path) as being
separate sliding bodies. The minimum acceptable shear-friction factor

(Ss-f) required for CE design was specified as fol~r(4).

2. Problems with Previous Design Criteria

a.
are:

(1)
failure

(2)
founded

b.

that

Sliding Resistance. Limitations of the sliding resistance approach

The criterion is valid only for structures with critical slidina
alona a horizontal plane.

The limiting ratio of > ~ (),65was only intended for structures
on very competent rock. EV

Shear-Friction. Limitations of the shear-friction approach are:

The shear-friction factor is defined as the ratio of the maximum(1)
horizontal base resistance plus a passive resistance that is composed of
shear strength and weight components, to the horizontal force actually
applied. The safety factor relative to slidina stabilitv should be
applied to the shear strength of the material rather than partially
strenqth and partially weight components.

(2) The shear-friction factor for upslo~e sliding approaches
infinity when the angle of inclination of the failure plane is equal to
an angle of (90 - $) .

1-2
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(3) The value of passive resistance (Po) used in Equation three was
defined as the maximum force which can be developed by the wedge acting
independently from the forces acting on the structure. The structure and
the passive wedge act as a compatible system which is in static
equilibrium.

1-3
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P

‘P

Q
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‘1

ss-f

v

u

w

LIST OF SYMBOLS FOR INCLOSU~ 1

Definition

The portion of the critical potential failure
surface which is in compression.

The summation of horizontal service loads to be
applied to the structure.

The factor of shearing strenqth increase.

The water pressure on the projected area of the
structure assumed to move and actinq on a
vertical plane normal to the direction of motion.

The passive resistance of the rock wedge at down-
stream toe.

Factor of safety of shear.

The maximum horizontal driving force which can
be resisted by the critical path.

The ratio between average and maximum shear stress.

Total resisting shear stren~h acting over the
failure plane.

The total shear strength under conditions of no
load.

The shear-friction factor of safety.

The smation of vertical service loads to be
applied to the structure.

The uplift force under the sliding plane.

The weight of the structure above an assumed
sliding plane.
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EXAMPLES

1. Examples of typical static loading conditions for single and multiple

wedge systems are presented in this Inclosure.

2. These examples are provided to clearly demonstrate the procedure for

applying

multiple

the general wedqe equation to the sliding analysis of sinqle and

wedge systems. The variation of uplift pressure, orientation of

failure planes, etc., used in the examples were only selected to simplify

the calculations, and are not intended to represent the only conditions

to be considered during the design of a hydraulic structure.

Inclosure 2
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81

&amplel: Single Wedge

Determine the factor of safety against sliding for the following single wedge system

yw = 62.5

Pk.
pcf ~

0.7

100 11

L

7C= 150pcf
v=—

100 yw
~ L1 = 75’+

In . 450
1

‘oo’ww “=’”ksf U, N,

Free Body Diagram

General Wedge Equation
tafd +; c,

[(Wi+ Vi) COS~i - Ui+[HLi-HRi)$in ail F:;i——’ -

Pi_, -Pi=
(HLi– HRi)COSai+(Wi+ Vi) sins.~&Li

I

tan $ i

(COSUi - sinui —- )
FSi

Solva for Safety Factor ( FS)

j=l HR1=O Vl=f) P. P1=O U,= OCOSQ1=l sirlal ‘O

tan $5

O=(W1– U1)— —–HL1+ ‘Ll
Fe FS

1 1
HL1 =—(100)2YW = 3f2.5k U1 =—(75) (100) yw= 234.4k t WI = 603.8’1

.
f! L

(W1– U1) tan45°+c ,Ll
FS =

‘Ll

[603.8 - 234.4) (1) + 10 (75) (369.4 + 750)
FS = . = 3.5a

312.5 312.5
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Example 2: Multiple Wedges

Determine the factor of safety against sliding for the following fivewedgesvstetn

\.

11

s

II
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Sliding Stability Analysis
Example: Five Wedge System

Free Body Diagrams of Wedges

wedge
No. 1
(i= 1}

/ N2

No. 2
(i= 2)

Wedge
No. 3

(i =3)

Wedge
No. 4

(i =4)

Wedge
No. 5

(i =5}

2-4
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Slidinq Stability Analysis
Example: Five Wedge System

General Wedge Equation

tan di
[( Wi*Vi)cOsa i- Ui+(HLi -H Ri)sinai]_

Ci

Pi_, –P;=
–(HL; -H Ri)cosai +( Wi+Vi)sinai+_Li

FSi FSi

I

I

~

#+Ili/,’,.‘,
0 ““ .—.——.++x,

—a;

‘\
‘.
‘~+ti

tan@i

(COSai– Sinai —)
FSi

t

‘Yi

F
-.*‘ti+Ili .-’.

h
,.-’

‘\\

‘,
‘.
‘\ +a 1

0 — ‘- —- —-*+Xi

Sign Convention for General Equation

Wedge Forces for Trial Safety Factor of 1.5

1=1 HLi=HRi=O

Ian #1 tan 20
tan+d=— =— @d = tan-? (0.243) = 13.64°

FSI 1.5

+d

al=-(45°+—)=–51,820

2

I

This orientation of the failure path

sln (-51.82) = –0.786 is only true if thestratification and
surface are horizontal

COS(–51,82) = 0.618

LI = 5/ sin (-51.82)1 = 5/0.786 = 6.36’

2-5
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Sliding Stability Analysis
Example: Five Wedge System

.

WI= 1(0.117) (5)*6 .36cos (-51.82) = 1.15k J
2 1 7.29k $

V, = (25’’.0625) 6.36 COS (–51.82) = 6.14k ~
1

1

u,=: (.0625) (25+30) 6.36 = 10.93k?
2

tan 20
[7.29 (0.618) – 10.931 —+ 7.29 (--0.786)

(P. – P,)= 1.5 = –9.olk
tan 20

[0.618 – (–0.786)—]
1,5

~ HLZ=HRZ=O

tan # z tan 30
‘1 (0.385) = 21.05°tan+d=—.c @d = tan

FS2 1.5

@d
a,=-. (45 +—) = –55.530

2

sin (-55.53) = –0.8244 COS (–55.53) = 0.566

L2 = 10/ Isin (–55.53)1 = 12.13’

1

w~=0.117 (5) (12.13 x0.!j66) +–(.122) (10) (12.13X0.566) = 8.20k$
2.

V2 = (25X.0625) (12.13X0.566) = 10.73k 1

1
U2=–(0.0625} (30+40) (12.13) = 26.53k7

2
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Sliding Stability Analysis
Example: Five Wedge System

tan 30
[18.93 (0.566) - 26.53] —+ 18.93(–.8244)

(P, –P2)= 1.5 =- 24.56k
tan 30

[0.566 – (-0.8244) 1
1.5

(Pl - Pz) = 2~.56k

_ “3 =9.5° h =51sin 9.5=30.3’i=3

H~ =1(0.0625) (25)2= l;.53k HR3 =0
-L

U3=: (0.0625) (40+10) (30.3) = 47.33k Y

2

W3=122.4k1
sin 9.5° = 0.165 COS 9.5 = 0.986

tan 30

[122.4 (.986) -44.1~1 —- 19.53 (0.986) + 122.4 (.165)

(p2-p3)= 1.5 =j2.97k

tan 30
(.986 – .165 X—)

1.5

(P2 - P3)‘3z:97k

tan ~4 tan 30°
‘1 (0.385) = 21.05°tan @d =— =— $d = tan

FS4 1.5

1

.4 “ 45 –– +~ = 34.475°
2

sin (34.475) = 0.566 COS(34.475°) = 0.824
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Sliding Stability Analysis
Example: Five Wedge System

LA = 5/ sin 34.475 = 8.83’

1

W4= (0.132) (5) (8.83X.824) +–(0.122) (5) (8. S3X0.824) = 7.02k J

2

U4=‘(0.0625) (5+10) (8.83) = 4.14k ~
2

tan 30
[7.02 (.824) -4. 14] —+ 7.o2 (,566)

(P3 –P4)= 1.5 = 7.59k
tan 30

[0.824 – 0.566 ~
1.5

tan 45 tan 40
tan$d=—. — +d = tan-l (0.559) = 29.22°

FSS 1,5

1

a, = (45 -–+d) = 30.38 sin 30,38 = 0.5058 COS 30.38 = 0.8626

2

Ls = 51sin 30.38 = 9.89’

Ws =1(0.132) 5 (9.89X0.8626) = 2.82k 1
2

us =:(0.0625) (5) (9.89) = 1.545k t
2

tan 40
[2.82X.863 – 1.54] — + 2.82X.506

(P4-PS)= 1.5 = 3.32k
tan 40

[.863 – .506 ]
1.5
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%~.,ng Stability Analysis
~o~-xample: Five Wedge System

lb
Summary: Wedge Forces for Trial Safety Factors

FS=l.5

i ‘i Li HLi

1 –51.82 6.36 0

2 –55.53 12.13 0

3 9.5 30.3 19.53

4 34.47 8.83 0

5 30.38 9.89 0

FS = 2.5

i ai Li H Li

1 –49.14 6.61 0
2 –51.5 12.78. 0

3 9.5 30.3 19.53

4 38.5 8.0 0

5 35.72 8.56 0

FS = 2.0

i ‘i Li H Li

1 –50. 16 6.51 0

2 –53.05 12.51 0

3 9.5 30.3 19.53

4 36.95 8.33 0

5 33.62 9.03 0

HRi

o
0
0
0
0

HRi

o
0
0
0
0

HRi

o

0

0

0

0

Vi

6.14

10.73

0
0
0

Vi

6.75

12.43

0

0

0

Vi

6.52

11.73

0

0

0

Wi

1.15

8.20

122.4

7.02

2.82

Wi

1.27

9.50

122.4

6.06

2.29

Wi

1.22

8.97

122.4

6.43

2.48

Ui (pi_, - Pi)

10.93 –9.01

26.53 -24.56

47.33 32.97

4.14 7.59

1.54 3.32

APR = 10.31

Ui (pi_, - Pi)

11.36 -9.10

27.95 -25.48

47.33 19.65

3.76 6.26

1.34 2.45

APR = -6.20

Ui (pi_, – ‘i)

11.19 -9.06

27.37 -25.13

47.33 24.53

3.9 6.73

1.41 2.75
-

APQ = -0.18
11
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Sliding Stability Analysis
Example: Five Wedge System

Graphical Snl~ftinm I-. ~~fety Factor

The safety factor for sliding equilibrium of the five wedge system is determine from:

5 [APR=O
v (pi_, - Pi)=JP~ .
i=l [Apff*O

10

9

b

7

6

5

4

3

2

1

-1

-2

-3

-4

-5

-6

-7

Safety factor for equilibrium

For tria I safetv factors

‘\
-APQ

\
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ALTERNATE NETHOD OF ANALYSIS

1. Definition of Factor of Safety. This sliding stability criteria is
based upon presently acceptable geotechnical principles with respect to
shearing resistance of soils and rock, and applies the factor of safety
to the least known conditions affecting sliding stability; that is, the
material strength parameters. The factor of safety is related to the
required shear stress and available shear strength accordinq to Eqaation 1A:

T
T

a=—
FS

(M)

where

T = the required shear stress for safe stability

‘a = the available shear strength
Fs = the factor of safety

The most accepted criteria for defining the available shear strength
(’ra)of a given material is the Mohr-Coulomb failure criteria. Equation 1A
may be rewritten as:

‘r= (c +U tan$)\FS (2A)

in which

c = the cohesion intercept
u = the normal stress on the shear plane

$ = the angle of internal friction

The ratio ~a can be considered as the degree of shear mobilization.
FS

2. Solutions for Factor of Safetv. The followinu equations for evaluating
sliding stability were developed from the definition of FS and the assumption
discussed in paragraph one above. The equations provide FS solutions for both
single and multiple-plane failure surfaces, using any nuxnber of blocks or
wedges.

Inclosure 3
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a. Notation:

c =

u.

A=

v=

H =

a =

$ =

i=

N.

the cohesion intercept

the uplift force acting under a wedge on the critical potential
failure plane = uplift pressure x area of critical ?otential
failure plane

the area of the critical potential failure plane

all applied vertical forces (body and surcharqe) acting on
an individual wedge

all applied horizontal forces acting on an individual wedge

the angle between the inclined plane of the cr’itical potential
failure surface and the horizontal (a > 0 for upslope sliding;
a < 0 for downslope sliding)

the angle of internal friction along the critical potential
failure plane considered

the subscript associated with planar segments along the
critical potential failure surface

the number of wedqes in the failure mechanism or number of
planes making up the critical potential failure surface

b. Case 1: Single-Plane Failure Surface. Figure 3-1 shows a graphical
representation of a single-plane failure mode. Here the critical potential
failure surface is defined by a single plane at the interface between the
structure and foundation material with no embedment. Equation 3A provides
a direct solution for FS for inclined failure glanes.

FS =
CA + (V cos a - U+Hsina)tan$

H cos a - V sin a
(3A)

For the case where the critical ,potential failure surface can be defined as
a horizontal plane (a = O) , Equation 3A reduces to Equation 4A:

FS =
CA + (V - U) tan $ (4A)

H

c. Case 2: Multiple-Plane Failure Surface. This general case is
applicable to situations where the structure is embedded andior where the
critical ~tential failure surface is defined by two or more weak planes.
The solution for FS is obtained ~rom Equation 5A:
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! ciAicosai+(v:-uicosai)‘an$i
ai

i=1

FS =

~ (Hi- Vi tan ai)
i= 1

where

tan $i tan ai
1-

FS -
n .
a. .-. /

Figure 3-2 shows
form, two planes

(5A)

L 1 + tan’a
i

a graphical representation of a multiple (in its simplest
plane failure mode.

3. Use of Equations and Limitations of Analvtic Techniques.

a. Case One: Single-Plane Failure Surface. The solution for the factor
of safety is explicit by use of Equations 3A and 4A. These equations satisfy
both vertical and horizontal static equilibria. However, the user should be
aware that in cases for which a > 0 (upslope slidinq) and where H/V ~ tan a,
Equation 3A results in a FS = ~ or a negative FS; in these cases, solutions
for FS do not have meaning.

b. Case Two: Multiple-Plane Failure Surface.

(1) Equation 5A is implicit in FS (except when @ = O or a = O) since
n is a function of FS. Thereforer the mathematical solution of Equation 5A
r~quires an iteration procedure. The iteration procedure requires that an initial
estimate of FS be inserted into the na term and a FS calculated. The calculated
FS is then inserted into the na term and the process is repeated until the
calculated FS converges with the inserted FS. Generally, convergence occurs
within four to five iterations. The iteration process can be performed
manually or the equation can be easily programmed for a programmable calculator.
To facilitate hand solution, a plot of nu versus a for values of tan 4 IFS is
given in Figure 3-3.

(2) Equation 5A is similar to the generalized method of slices for
sliding stability criteria. However, in order to develop a simple analytic
technique suitable for routine use, the vertical side forces due to impending

3-3



motion of the wedges between slices were assumed to be zero. Therefore ,
although the equation satisfies complete horizontal static equilibrium,
complete vertical equilibrium is in general not satisfied. The FS computed

from Equation 5A will be slightly lower than the FS computed from the more
complicated techniques which completely satisfy both vertical and horizontal
static equilibria.

(3) The user should be aware that Equation 5A will yield identical
solutions for FS with the methods described in the main body of this ETL.
The governing wedge equation (equation seven) , together with the boundary
conditions (equations three and four) to have the system of wedges act as
an integral failure mechanism, is mathematically equivalent to Equation 5A.
The user may find the more convenient method to be a function of the design
situation. Since solutions for FS by these two methods of analysis are
identical, and since the mathematical approach is quite different, one can
effectively be used as a check on the other.
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a. Upslope Sliding, ~>0

b. Dowlslo~eSliding, a<O

c. Horizontal Sliding, m = O

Figure 3-1. !;ingle Plane Failure Mode
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v=.

H
m

d—. wedge 1 wedge 2._9

VI

!

- Segment 2
//v

Tension Crack ~

Sign convention: ‘al
4

al < 0, downslope sliding

a: > 0, upslope sliding

Figure 3-2. Multiple Plane Failure Mode in the Simpllst Form of Two Planes.
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1,2

1.0

0.8

r1.0

0.6 0.8

0.6
Tznd

—7FS
I c.:

0.4

L

0.2

0

0.2

–60

tan+
1–—

FS
tan a

“.
0

1 + ~an2 a

yR/’
/// //

/

/

Down Slope Slldlng

+
Up Slope Slidlng

–40 -20 0 20 40 6(

a (degrees)

80

Fi~re 3-3. Plot of n= and u for Values of tan@/FS
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